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DEFINITION OF SYMBOLS 

m =  1,3 

- 

C 

$ 

EDi 

e ,  e . .  
1.l 

e 
-N 

e e 
-Pk' Pk 

-2 
%k' eSk 

e i(i-1) 
I 

% 

Fmi 

k 
G 

- H, H 

HDk 

H., Hi 
-1 

subscripts used in the definitions 

i = 1,2;3 

j = 1 , 2 , 3  

k =  A,B,C 

a bar  below a quantity indicates a vector 

cosine (before greek le t ter)  

normalized torque command [ l / s ]  

component of the ith CMG angular momentum vector along the 
orbit normal [Nms] 

unit vector along the ith CMG and its components in vehicle space 

unit vector along orbit normal (north) 

normalized c ross  product of the angular momentum vectors of the 
CMG's of the kth pair and its magnitude 

sum of the e I s  squared Pk 

normalized sum of the lcth pair and its magnitude 

= 1 / J V  
i(i-1) 

- 3 + 3 + + 3  - 

n angle function [ ( rad)  I 

variable gain 

angular momentum vector and i ts  magnitude [Nms] 

dot product for  kth CMG pair [ (Nms)'] 

angular momentum of the ith CMG and its magnitude [Nmsl 



DEFINITION OF SYMBOLS (Continued) 

nominal CMG angular momentum magnitude [ Nms] 

c ross  product of the CMG's of pair k and its magnitude [ (Nms)'] 

HN 

H 
-Pk' Pk 

"p" sum of the H I s  squared [ (Nrns)'] 

H 

Pk 

. 

sum of the angular momenta of the CMG's of pair  k [Nms] 
%k' HSk 

angular momentum change of pair k sum [Nm] 
%k 

AH angular momentum difference between initial and f inal  H 
-Sk - S k  

H H  CMG total angular momentum [Nms] 
-T' T 

change of H [ N m ]  
-T 

distribution and rotation gain, respectively [ l/s] 
KD' KR 

n exponent 

S sine (before greek letter)  

[ Nms] 

-T H 

rotational-sense functions 
'Tmi 

sL 

t 

TCAX 

TCAP 

T 
-V 

U -P  

limit on all S 

tangent (before greek letter)  

CMG torque command and its components in  vehicle space [Nm] 

component of torque command perpendicular to the sum of pair  A 
( in  T -H -plane) [Nm] 

component of torque command along sum of pair A [ Nm J 

torque on vehicle caused by CMGIs [Nm] 

unit vector perpendicular to both CMG's of pair  A 

and S 
kmi Tmi 

-C --SA 
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DEFINITION OF SYMBOLS (Continued) 

' -  

unit vector along pair  A sum 

unit vector perpendicular to pair S sum and -c T 

% 

% 

Q angle between the CMG angular momentum vectors  and pair  A sum 
(for the case of H 

i = HN) [ rad] 

a! 

ci! 

initial and final angles between ith CMG vector and pa i r  sum [rad] ,  

change of a .  [ rad/s l  
'1' respectively . 
i 1 

P change in direction of SA [ rad] 

T 
= [ 6 8 6 1 CMG angular velocity caused by gimbal angle 

il i2  i3 6. 
-1 

rates and its components in vehicle space [ r ad / s ]  

inner and outer gimbal angles of the ith CMG [ r a d ] ,  respectively 

gimbal angle rates [ rad/s]  

rotational r a t e  of kth pair  about the vector sum caused by distribution 
l aw [ rad /s ]  

'I ( iy  '3 (i) 

E, 
m ( i )  

Dk 
E 

rotational ra te  of kth pair  about the vector sum [rad /s ]  k E 

E constituents of E 

rotational ra te  about pair  k sum caused by rotation law [ rad /s ]  

of pa i r  k caused by 6 m(i) [ r ad / s l  kmi R 

Rk 
E 

rotational rate of all CMG vectors about the total vector sum T E 

[ raws1 

constituents of E 

vehicle angular velocity [ rad/s]  

caused by 6 m(i)  [raws1 T 
E 
Tmi 

*V 

w w  -i ' i j  CMG i angular velocity with respect  to the vehicle and i ts  
components in vehicle space [ rad/s]  
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DEFINITION OF SYMBOLS (Concluded) 

w CMG angular velocity used for  scissoring [ r ad / s ]  (arbi t rary H 
case) Pki 

CMG angular velocity used for  scissoring (nominal H case)  
L rad/sl  

P k  
w 

w 
-Rk 

CMG angular velocity caused by R&D l a w s  about pair  k sum 
[ rad/ s 1 

w 
-RT 

CMG angular velocity caused by R l a w  about total sum [ r ad / s ]  

w 
-Xk 

CMG angular velocity used for  rotating of pair k as a unit 
1 rad/ s 1 



TECHNICAL M.EMORANDUM X-64536 

A CONTROL LAW FOR DOUBLE-G IMBALED CONTROL MOMENT 
GYROS USED FOR SPACE VEHICLE ATTITUDE CONTROL 

SUMMARY 

Space vehicle attitude control, which utilizes control moment gyros 
(CMG's) to develop the necessary control torques, requires the generation of 
CMG gimbal rate commands in such a way that the resulting precessional 
torques on the space vehicle equal the desired control torques; i .e.,  no torque 
crosscoupling occurs. Consideration of the combined effect of a pair of double- 
gimbaled CMG's allows the generation of a no-crosscoupling CMG control law 
on the basis of easily understandable kinematic relationships. Fo r  the control 
l aw  presented, the only difference between the commanded and the actual con- 
t rol  torques exerted on the space station is caused by the difference between 
the commanded and the actual gimbal rates.  The control law is expanded from 
the application to one CMG pair to the application to three CMG's. Three CMG 
pairs can then be formed and the desired control torque can be split between 
them according to their relative control capability, Skylab-A is used as an 
example for the utilization of the excessive degrees of freedom to better distri-  
bute the CMG angular momentum vectors with respect to each other or  their 
gimbal stops without an effect on the total CMG angular momentam; i. e. , with- 
out resulting in a net torque on the space vehicle. The general development 
of the CMG control law assumes arbi t rary CMG momentum magnitudes; but i t  
is also shown that the expressions can be simplified if i t  is assumed that all 
CMG angular momentum magnitudes are equal. This simplified version is 
presently used for control of the CMG's on Skylab-A. 

INTRODUCTION 

It is desirable fo r  many space vehicles (especially for an orbiting 
space vehicle like Skylab) [ 1-41 to have an  angular momentum storage device 
on board to accommodate cyclic angular momentum accumulations. This saves 
thruster attitude control fuel and simultaneously allows the reduction of the 
attitude e r r o r .  Often three double-gimbaled control moment gyros (CMG's) 
a r e  used. 
create  a control torque on the vehicle which matches the commanded torque. 

Then the need arises to command six gimbal angle ra tes  to 



CMG control laws comtemplated in the past such as the c ros s  product s teer ing 
l a w  [ 1,2]  resulted in crosscoupling; i. e. the actual torque deviated from the 
commanded torque in magnitude and direction, even when ideali CMG's were 
assumed. This report  shows that the crosscoupling can be eliminated from the 
control of the CMGIs by a l aw which considers the CMG's always in pa i r s ,  
under the assumption that the CMG's are ideal. 

For  convenience, the control l aw  is broken down into a steering l aw 
(which is the control law proper ,  and the only one to result  in a net control 
torque'on the vehicle) and two rotation l aws .  
nomenclature of Skylab-A wi l l  be used throughout the development. The fact  
that failure of a single CMG necessitates two-CMG operations has  also been 
kept in mind throughout the development. 

The conventions and the 

DEVELOPMENT OF A NO-CROSSCOUPLING STEERING 
LAW FOR A CMG P A I R  

Attitude control of a space vehicle is always achieved by application 
of a control torque T on the vehicle. 

momentum H the relationship holds 

For  a CMG system with a total angular 
-V 

-T 

where H is the change r a t e  of H with respect  to inertial space. The problem 

is therefore how to effect the desired CMG angular momentum change ra te  AT. 
-r --T 

The assumption is made that each CMG has a fixed, though arb i t ra ry ,  
angular momentum magnitude, generally different f rom the magnitudes of the 
other CMG's. Elimination of the crosscoupling in  the CMG steer ing l a w  requires  
that the actual angular momentum change is equal to the desired momentum 
change under the assumption that the commanded and the actual gimbal rates 
a r e  equal. While one CMG cannot satisfy this condition, it is relatively easy 
for a pa i r  of CMG's. This wi l l  be shown on pair A (CMG's 1 and 2 )  as an 
example; in the next section the steering l aw wi l l  be expanded to the other 
possible pairings. 3 and 5 are the angular momentum vectors of CMG's 1 
and 2, with the initial positions indicated by the subscript I and the final by the 

1. A control moment gyro which has  no gimbal inertia, whose angular 
momentum magnitude and direction a r e  known exactly, and which follows 
the commanded gimbal rates exactly. 

2 



subscript F. The desired momentum change is shown in Figure 1 a s  a momen- 
tum difference AH 

H - SAF' 

"'%AI -SAF' 
the case. 

and a rotation i s  therefore permissible for the development of the momentum 
change ( i t  is indicative of the fact that one degree of freedom remains,  which 
w i l l  be treated la te r ) .  

between the initial pair  sum H and the final pair sum --SA -SA1  
The angular momentum vectors are all shown lying in  the same plane 

and H This w a s  done for clarity, but i t  would generally not be 

is not disturbed by a rotation about itself On the other hand, H --SA 

H 
- I1  

Figure 1. Momentum change. 

I .  
The change of wi l l  be broken down into a rotation p of H (a --SA 

rotation of the CMG vector pair  a s  a unit) and into a change in  magnitude of 
by a change of the angles ai and a2 (scissoring action of the momentum %A 

vectors with respect to each other).  Of course,  both motions occur simulta- 
neously. It might be of interest  to note that the sum H 

limit (Hi  + H2) when the angular momentum vectors a r e  parallel, but also a 
lower limit ( I Hi - EI, I ) when the vectors a r e  antiparallel. The latter becomes 
important for two-CMG operation. 

has not only an upper 
SA 

3 



Before the angular velocities for pair rotation and scissoring are 
developed, it is convenient to define the following quantities ( a  bar  below a 
letter indicates a vector;  a quantity without a bar  indicates either a scalar 
o r  a vector magnitude) ; 

H -HJ+g2 -SA 

HDA E ’ 1 1 2  [ (Nms)’] pair  dot product (3) 

H 5 5 x 5  [ (Nmsj2] pair  c ros s  product (4) -PA 

u r H  / H  
-S +A SA 

u E H /€IpA -P -PA 

= U X T  1 INml TCAX ‘S -CA 

i = f , 2 , 3  

j =  I, 2 , 3  

k = A , B , C  

m = 1 , 3  

torque command (equiva- (5) 
lent to desired momentum 
changez) 

unit vector along pair  sum ( 6 )  

unit vector perpendicular ( 7 )  
to both 5 and - H2 

unit vector perpendicular (8) 
to both H and T 

--SA - C A  

component of <A T along (9)  
pair sum 

component of T (10) *A 
perpendicular to pair sum 

subscripts used 
throughout 

2 .  Note that a positive torque corrlmand f o r  the CMG’s resul ts  in a negative 
torque (reaction) on the vehicle. 

4 



The pa i r  rotation wi l l  be proportional to T 

-XA 

and the necessary 
CAX 

angular velocity command w 
ness  of w is proportional to H and w e  get 

wi l l  be along the unit vector - k. The effective- 

-XA SA 

or 

Figure 1 wi l l  be used as an aid in the development of the angular rate 
command w and w needed for scissoring. They wi l l  be proportional 

to the component T 
-PA 1 -PA2 

- - HsA. The angular velocity for scissor ing wi l l  be 
CAP 

- p A I ' =  0 ' I u  
-P 

and 

w = b2 u 
-PA2 -P 

The following two equations hold 

SA 
H ~ C C X ~  + H ~ c o ! ~  = H 

H ~ s o ! ~  + H ~ S C Y ~  = 0 . 
Differentiation yields 

o r  

&I = Hzca2H /H SA PA 

b2 = -HlcalH /H SA PA 

"-1 0 

5 



= HiHZS (a2 - a i )  

= 1 3 x 3 1  

With the relationships 

- 

HSA - TCAP 

Both CMG’s participate in the pair  rotation through o 

the scissor ing through -PA o 

angular velocity commands are 

[equation (16)J and in 

[equations (28)  and (29) 1 such that the 
-XA 

1 and -PA2 w 

(30)  - kv - w  s o  Ei - -XA -PA1 

(31)  - kv w 2 = w  + o  -XA -PA2 

The angular velocity of the vehicle must be subtracted since o 

o 
-PA2 
with respect to the vehicle). 

o and 
-XA’ -PAl’  
but 3 and 3 are are with respect  to inertial space (otherwise - -  H # T) 

6 



EXPANS ION OF NO-CROSSCOUPLING STEERING 
LAW TO THREE CMG's 

When three CMGIs are operative, they can be paired three ways: 3 
and €& form pair A, 3 and 5 form pa i r  B, and 5 and Hi form paiq C. Each 
CMG participates in two pairings and the resulting angular velocities must  be 
added. Basically each pair  can produce the commanded torque and a means 
must be found to split the total command into individual pa i r  commands in such 
a way that the pa i r  capabilities a r e  considered. Equation (16) shows that w 

-XA 
is proportional to l/H 

proportional to 1/H 

(ze ro  for Hi = Hz) , the splitting or prorating wi l l  be done with a function of 
HpA (prorating must  be identical for  w 

prorating with H directly wi l l  make the w ' s  insensitive to H 

goes to zero,  it is desirable to have the angular velocity commands go to zero too, 
so that the case of one-CMG-out (i. e. , failure of a single CMG) can be accepted 
without modification. Prorating is therefore done with H 

and equation (28) o r  (29) shows that the w 
SA -Mi 

Since H goes to zero  when H reaches its minimum 

Is are 

PA ' PA SA 

and w of the same  pa i r ) .  While 
-Xk -Pki 

when H 
Pk Pk - Pk 

Pk ' 

Before the variable gains used for prorating (splitting) of the torque 
command are developed, it is convenient to add the following definitions. 

H 
-SA 

%B 

%C 

H -T 

HDA 

HDB 

H 
DC 

H 
-PA 

7 



H = 3 x 3  -PB 

+ H + I-I [ ( N ~ s ) ~ ]  (42) PC 
XHp” - 

- ‘PA PB 

With the’above definitions and the preceding discussion, the variable prorating 
gains become 

(43) 

(44) 

(45) 

G~ - - H ~ ~ ~ / c H ;  

GB - - HP13 2/CH,2 

GC - - HPC 2/CH,z 

%A A - C  

and the torque commands become 

= G  T (46) 

T = G T  (47) --CB B - C  

= G  T (48) s c  C - C  

The angular velocity commands for  pair  A from equations (16) 
are now 

(28) and (29) 

x T  ) w - - (1/HsA2) (gsA <A 
-XA 

= (‘A/’SA2) (%A x 

= p  PA 2 /(HsA 2 CH;)] (%A 5) 
= [(H: + H ) ( H  - T 2H 

DA S A  -CA)’(HSA PA ’1 HPA w -PA 1 

- - 
+ HDA) (%A * &)/(HSA2HpA2)]EpA 

= [ ( H l  + II DA ) ( H  --SA - -C T )/(HsA2CH P 2)]H -PA (50) 

(49) 

8 



: -  
The angular velocity commands for all pairs  a r e  then (pair  A commands are 
repeated for completeness) 

I- -l 

- w - -xc 
- w - 

-PA 1 

- - w 
-PB2 

(52) 

(53)  

The CMG angular velocity commands resulting from the steering law a r e  

Ed=" + w  + w  + w  - 9v (61) -XA -PA1 -XC -PC1 

- AV 
2 = w  + w  + w  + w  

-XB -PB2 -XA -PA2 

2 = w  -XC + w  -PC3 + w  -XB + w  -PB3 - 9v (63)  

Appendix A shows that equations (52) and (60) can be simplified if the 
angular momenta of the CMG's a r e  equal. 

Appendix B shows that the actual torque T is equal to the commanded 

-c torque T i f  the commanded and the actual gimbal ra tes  a r e  equal. 

9 



TRANSFORMATION OF A GENERAL RATE INTO GIMBAL RATES 

8 = -1 

The angular velocity commands [equations (61) to (63) ] are generally 
not perpendicular to the CMG angular momentum vectors and do not depend 
on the CMG mounting configuration. The gimbal rate commands obviously do 
depend on the mounting orientation of the individual CMG. The CMG mounting 
configuration for Skylab-A is used (Figure 2 ) .  This configuration is cyclicly 
permutable and the gimbal rates wi l l  be developed f o r  CMG 1 and then 
permuted for the other two. 

- 
1 ( I) 63 ( 1 ) 

+s 

+ d  
1 (1) c63 (1) 

The momentum change of CMG 1 resulting f rom tne commanded 
velocity 3 should also result f rom 4 (where i t  is assumed that the actual and 
the commanded gimbal rates are equal): 

o r  

(21 - 5) x 3  = 0 . 
Geometric relationships give (s  

L 

3 = Hi 

t c d  l ( l ) c 6 3 ( 1 )  

-C6 1(1)Sb3(1) 

sin,  c = cos) 

With equations (66) and (67),  equation (65) results in 

10 



P'" 

OUTER 

X 

Y CMG MOUNTING PLANE 

X CMG MOUNTING PLANE 

Figure 2 .  Control moment gyro orientations. 
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Equation (70) yields 

+ w c6 (71) 12 3(1) 
= w s6 

1(1) 11 3(1)  d 

This result inserted into equation (68) o r  (69) yields (t = tan) 

Putting equations (71) and (72) in matrix form and permuting for  CMG's 2 
and 3 resul ts  in 

w 
31 

( 3 )  l ( 3 )  s63 (3) -' -t61(3)C63(3) 32  w 

w (75) 3 3  

1 -  - 

3 (3) 
0 S 6  

- - 

12 



The direcfion cosines of the CMGIs are usually available and w e  define e. to 

be a unit vector along the angular momentum vector of the ith CMG with the 
following result  (for the Skylab-A CMG configuration, Figure 2) : 

-1 

e = e  
-3 

e =  
-1 

e =  
' -2 

- -  
-cd s d  7 

31 1(3)  3(3) 
e 

1 (3 )  
-Sd 32 

1 (3) c63 (3 )  
+ C d  33 e 

- - - 

11 
e 

12 
e 

13 
e 

21  
e 

e 
22 

23 e 

1 (1) c63 (1) 

1 (1) s63 (1) 

-Sd 

+ C d  

-Cd 

1(1) 

1 ( 2 )  
-Sd 

1 (2lc63(2) 

l ( 2 )  "3 (2) 

+ C d  

- C d  (77) 

Equations (731, (74),  and (75) can now be expressed in t e rms  of the e...  
13 With the additional definitions of 

e 13 = 1/4- (79) 

e I =  = i / J 7  21 (80) 

e 32 1 1  - l / cd  1(3)  = 1 / J T -  
1 ( 2 )  

- l / c d  21 

(81) 

the result  is 

13 



where i t  should be remembered that w. = col(w w (3 ) can be any 
angular velocity. -1 ii’ i2, i3 

ROTATI ON LAWS 

Three of the six degrees of freedom of the CMG configuration are 
used for  the generation of a control torque on the vehicle. The remaining 
three are the rotations of the pairs about their sums (and a l so  a rotation of 
all three CMG’s together about their total sum which is a linear combination 
of the sum rotations). A l l  these rotations do not result in a momentum 
change; i. e. , no torque is exerted on the vehicle. The rotations have the 
following form: 

= E (H  /H ) 
A-A SA 

w 
-RA 

w = E (H  /H ) -RB B-B SB 

0 = E (H /H ) -RC c -sc sc 

w = E (H /H ) -RT T-T T 

and can be used for some benefit, Contrary to the s teer ing law, there  is no 
unique way to determine the epsilons. One possible solution is given which 
proved successful in gimbal stop avoidance and in keeping the vectors well 
separated; the implication being that the CMG’s have limited freedom of gimbal 
movement. A l l  epsilons can be used fo r  gimbal stop avoidance (R-subscript) 
but only E E and E can be used f o r  a proper distribution (momentum 

vector separation; D-subscript) and they a r e  therefore split into two parts:  
A ’  B’ C 

E = E  + E  (92) A RA DA 

14 



E = ERB + EDB B (93) 

E = E  + E  (94) 
C RC DC 

The distribution only applies for the case of three CMG’s. No distr!bution 
is necessary for  the two-CMG case  (the vectors are already located at their 
proper separation and this separation depends upon the sum which cannot be 
altered). 

Gimbal Stop Avoidance (Rotation Law) 

Avoidance of the gimbal stops is treated first, and it is re femed to as 
the rotation l a w  (R-subscript) in spite of the fact that the distribution l a w  also 
uses rotations about the individual momentum vector sums. CMG pair  A is 
used again for  the development. Four gimbal angles are affected by E 

i. e.  , a compromise is necessary, and it is therefore desirable to make E 

the sum of the individually desirable rotations: 

RA; 

RA 

+ E  + E  (95) A i l  A31 A12 + ‘A32 
= E  

RA 
E 

A desirable rotation is such that the gimbal angle magnitude is reduced; i. e. , 
< 0. Therefore each component of E w a s  chosen to be of the 

RA 
6 6  m ( i )  m ( i )  
form 

E = - K F  S (96) Ami R mi  Ami 

where K is a fixed gain, F 

modified sign function. The F-functions for the inner gimbal angles are 

is an odd gimbal angle function, and S Ami is a R m i  

and for the outer gimbal angles we select 

The F-functions for the outer gimbal angles had to be modified because the 
center between the stops is a t  +7~/4 for Skylab-A, which is the example used 
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throughout this report .  The multiplier R is the ratio of inner to outer gimbal 
freedom giving the gimbal angles equal weight at their stops. The fifth power 
(n = 5) w a s  found by simulation to be appropriate for three-CMG operation 
where for small  gimbal angles the distribution (vector separation) should have 
preference. For two-CMG operation, however, the f i r s t  power was found to 
be more suitable. 

,The need for the S -functions a r i s e s  from the fact that the polarity Ami 
of the gimbal rate depends also on the direction of the pair  sum with respect to 
the individual CMG. To establish the S -functions, a unit vector along Ami 

is used with the gimbal rate equations (82)  through (87) : 
%A 

S A i l  = ei31[eli(HSA2 

For  pair  B and C we get (through cyclic permutation) : 

(103) 



All gimbal angles a r e  affected by a rotation about the total angular momentum 
and w e  select 

E = E  + E  + E  + E  + E  + E  (111) T32 T33 * T12 T13 T31 T TI1  

Again the selected form is 

E = - K F  S (112) Tmi R mi Tmi 

The angle functions F a r e  unchanged. The S t e rms  wi l l  be developed 

along the same line as the other S-functions (CMG 1 serves  as an example) 
mi Tmi 
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Cyclic permutation yields for  CMG's 2 and 3 

'TI2 - - (HS13SB12 + H  SASA12) /HT (115) 

+ H  SASA 32' "T (117) - 

- (HSBSB32 T32 
S 

The S-functions wi l l  have an upper limit of S This provides a 
L' 

linear range (besides the sign information) which is needed to avoid limit 
cycling otherwise introduced by the sign changes, The value of S allows 

selection of the linear range and the loss  in gain (S 
L 

an increase in K 

L 
< I )  can be made up by 

R' 

CMG Vector  Separat ion ( D i s t r i b u t i o n  Law) 

The bulk of the momentum change occurs quite frequently along a wel l  
known axis [ 51. If this is the case ,  one type of distribution law (D-law) can 
be applied which w i l l  separate  the CMG vectors by trying to make them contri- 
bute equally (in proportion to their magnitudes) to the angular momentum along 
this axis. 

Let e be a unit vector along the bulk of the momentum change (the 
-N 

orbit normal for Skylab) ; then the angle between e 

vector pa i r  wi l l  be maximized by (for pa i r  A as an example) 

and the plane formed by a -N 

18 



The significance of the various t e rms  is illustrated in Figure 3. K 

stant gain and H 

leads to the intermediate step 

is a con- 
D 

is a nominal momentum used for  normalization. . Evaluation N 

The third t e rm in the brackets shows that i t  vanishes when the magnitudes of 
the angular momentum vectors are equal. Further  evaluation yields 

with H = H H [cf. equations (28) and (29) 1. It should be noted that 
DA -1 -2 

x H  = ( H l + H  ) H  - (H: + H ) H  (122) 
%A -PA DA -1 DA -2 

With this equality and the use of cyclic permutations we get 

E = (K /H H ' ) (H  (123) DA D N SA S A  gPA' * 

E DB = (K D /H N H SB ' ) ( H  -SB x --Pd H ' (124) 

This form results in an isogonal3 distribution about the total angular 
momentum vector H if e is along H if  all CMG momentum magnitudes a r e  

equal, and if  there  is no rotation law effective (5 = 0). Otherwise, a com- 

promise results between the tendencies to spread the vectors and to reduce the 
gimbal angles. 

-T -N -T' 

3. A distribution of th ree  control moment gyros of equal momentum magnitude 
which contribute equally to their total momentum. This distribution results 
in equal angles between the individual momentum vectors and the total vector 
and equal angles between the vectors themselves. 
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ACTUAL 
MINIMUM 

MAXIMUM 
ACTUAL 

-& N 

\ 

ACTUAL PROJECTION ( t i i  /H, ) *eN 
DESIRED PROJECTION [ ( ~ i / ~ N ) ~ ( ~ , A / ~ s ~ ~ ~ ~ s ~ ~ s A )  eN 

NOTE: IjsA/HN 8 !N LIE IN THE PAPER PLANE 

HI /HN AND H-21" DO NOT LIE IN THE PAPER PLANE, 

BUT IN A PLANE WITH H / H  'SA N 

Figure 3. Distribution. 
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A positive K yields a right-handed and a negative %yields a left-handed 
R 

configuration (looking down on e 

H ) . -3 
respect to e 

right-handed means a sequence of H -H - -N ' -1 -2 
Both configurations are stable. The location of the gimbal stops with 

determines which of the two configurations is preferable. 
-N 

t -  

TOTAL CMG ANGULAR VELOCITY COMMANDS 
I .  

The CMG angular velocity commands from the various sources can 
be vectorially added to form the total CMG angular velocity commands: 

A no-crosscoupling control law for double-gimbaled CMG's can be 
developed using easily understandable kinematic relationships. The control 
l a w  is based on a CMG pair  as the smallest  unit, which can give a no- 
crosscoupling control law; but the law lends itself to easy expansion to the 
control of any number of CMG's as shown by the expansion to three CMG's. 
The development is based on the restriction that the CMG's have fixed momen- 
tum magnitudes, though the individual magnitudes a r e  not necessarily equal to 
each other. Unequal magnitudes resulted for the two-CMG case in an upper 
a s  well as a lower limit for the total angular momentum. The lower limit 
approaches zero when the momentum magnitudes become equal, which 
therefore is a desirable characterist ic.  
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APPENDIX A 

CONTROL LAW FOR NOMINAL ANGULAR MOMENTUM MAGNITUDE' 

If the assumption is made that the angular momentum magnitude of 
each of the CMG's is equal to the nominal value H simplification and norma- 

N' 
lizations can be applied. We have 

H = H e  
-2 N-2 

H = HNg3 
-3 

where the e's a r e  unit vectors  along the CMG's angular momentum [equations 
(76) to (78) 3 whose components usually are available from gimbal resolver  
chains. Using pair  A as an example w e  a l so  have 

= H (e 
N -1 

= H e  
N-SA 

+ e )  -2 

H = H ' (e x g2) -PA N -1 

= H leads to CY = -CY = (Y and this results in The relation H = H2 

(i  = 1 , 2 )  
N 2 1 1 

= 2 ( H  CCY)'  
N 

4. This simplified version is presently used for control of the CMG's on 
Skylab-A. 
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Consequently we have 

(HZ + HDA)/HsA = 1/2 
1 

Normal ized S tee r ing  Law 
Introduction of the above normalizations and simplifications yields 

with 

= T / H  % - C N  

and 

2 
PC 

C e p 2 = e  2 + e  2 + e  
PA PB 

We now have ( w  = - w  = w  ) 
-PA 1 -PA2 -PA 

With H1 = H2 = H 

which wi l l  result in w 

zero  simultaneously. This can be avoided by the relationship 

i t  is now possible that the sum H + H goes to ze ro  N -1 -2 

-XA 
being indeterminate since the c ros s  product goes to 

/ e  j 2  = ( s ~ c Y ) ~ / ( ~ c c Y ) ~  (ePA SA 

= s2a 

= 1 - c2a! 

= 1 - ( e  / t ~ ) ~  
SA 

With equation (A12), w of equation (A8) becomes 
-XA 

(A12) 

(A13) 
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The pair  rate commands for nominal H 

for completeness) 

are (pair  A commands a r e  repeated N 

r 
- w -PC - psc 

For  the nominal H case 

commands a r e  ' 

w = w  + w  
-1 -XA -1 - %  + w  - w  1 -xc -PC 

- kv w = w  + w  + w  - w  
-2 -XB -PB -XA -PA 

-kv * 0 = w  + w  + w  - w  
-3 -XC -PC -XB -PB 

Normal ized Rotat ion  Law 

When normalization is introduced, equations (88) to (91) change into 

w = E (e  / e  ) (A23) -RA A -SA SA 

w = E (e / e  ) (A24) -RB B -SB SB 

w = E c (5 sc /e sc ) (A25) -RC 

w = E ( e  /e ) (A26) -RT T - T  T 
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I 

+ e  6442) 
- 

( e s ~ S ~ 3 ~  S C ~ C ~ I ) / ~ T  
- 

'T31 

'T32 (eSBSB32 + e SA S A32 )/eT (A43) 

'T33 (eSCSC33 + e SB S B33 ) /eT (A44) 

- - 

- - 

Ail other equations stay the same [equations (95) to (98) , ( I  11) and (I 12) 3 

Normal ized D is t r i bu t i on  Law 

Equation (120) of the distribution law allows easy change for the case 
that Hi = H which results in 

N 

= K  (e - e ) * e  
DA D -1 -2 -N 

E 

= K ( e  - e ) * e  DB D -2 -3 -N 
E 

E DC = KD(gCJ - 21) ' 2 N  
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APPENDIX B 

PROOF OF TORQUE EQU IVAtENCE 

In the following development the proof is given that the actual torque 
is equal to the commanded torque under the assumption that the commanded 
and the actual gimbal ra tes  are equal. 

Several identities are needed for  the development and are given f i rs t ,  

The torque applied to the CMG’s is (the opposite of this torque is the 
torque on the vehicle) 

With equations (61) and ( 6 3 )  w e  get 

T = ( o  + w  + w  + W  
-XA -PA1 -XC -PC1) 

o r  

+ w  + w  + w  ’ (%XB -PB2 -XA -PA2’ %2 
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Equations (42) and (B2) allow the reduction of equation (B8) to 
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showing that 

T = T  -c - 

which w a s  to be proven. 
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